欢迎光临,我们将提供全系列矿用电缆、矿用屏蔽电缆厂家价格
矿用屏蔽电缆 logo
电缆
矿用屏蔽电缆基于meemd和Teo的电缆故障测距方法
2021-09-12 22:52:13
  核心词:矿用 电缆 meemd Teo 电缆 故障 方法 
  1、城市地区的电力电缆广泛应用于配电网中
  随着现代城市的发展,城区内电力电缆被广泛应用于配电网中。由于土地资源愈加稀缺,同时为了美化城市环境,电缆一般呈蛇形敷设在地下,传统巡线方式进行故障排查已无满足电缆测距要求。因此,研究精确、高效的电力电缆故障定位方法具有重要的工程实用价值。
  2、行波法是理论上公认的最精确的故障测距方法
  行波法被公认为理论上最准确的故障测距方法。行波测距的关键问题之一是行波波头的准确标定。目前行波波头的标定方法主要有小波分析和希尔伯特黄变换方法。小波分析通常运用于非奇异信号检测且需要根据不同情况选择合适的基函数和分解尺度。
  3、HHT方法是一种能够处理奇异信号的自适应分解算法
  HHT方法是一种能够处理奇异信号的自适应分解算法。通过经验模态分解将故障信号分解得到首个固有模态函数分量,对其进行希尔伯特变换,通过分析时频特性曲线标定波头到达时刻。由于EMD分解会出现模态混叠现象,即不同时间尺度的信号出现在同一个IMF分量中,因此利用该方法进行故障测距时误差较大。
  4、集总经验模式分解在EMD方法的基础上加入高斯白噪声
  集总经验模态分解在EMD方法的基础上添加高斯白噪声,虽然一定程度上消除了模态混叠现象,但是会出现噪声残余的问题。改进的集总平均经验模态分解方法不仅有效抑制了模态混叠现象,还消除了白噪声残余,能够真实地还原原始信号。希尔伯特变换适用于分析非线性、非平稳信号分解且具有自适应性,Teager能量算子是一种非线性算子,与希尔伯特变换相比,原理简单、运算量小,具有更好的实时性。电缆行波测距的另一个关键问题是确定行波波速如何。行波波速是一个变化量,矿用屏蔽电缆受多种因素影响,很难准确测定,因此测距误差较大。综上所述,本文采用不受波速影响的双端测距算法以消除行波波速对测距精度的影响。Teager能量算子是一种非线性能量算子,可以完整提取信号的瞬时频率与幅值,而Hilbert变换在变换过程中要进行两次快速傅氏变换,极大影响了计算速度。因此Teager能量算子较Hilbert变换运算量更小,更适用于快速变化信号实时检测处理。由于在三相系统中,电流行波存在复杂的耦合现象,会使行波测距的精度受到影响,需用Karenbauer变换对提取的信号进行解耦。
  5、故障行波头标定的主要步骤包括
  故障行波波头标定的主要步骤包括:利用Karenbauer变换解耦得到故障信号的线模分量;对线模分量进行MEEMD分解,得到IMF分量;取第一个IMF分量,计算Teager能量值,瞬时频谱上首个突变点即为波头到达位置。双端测距算法根据故障初始行波到达线路两端时间差的绝对值和行波波速求出故障点距离。其中为线路总长度,为行波在线路的传播速度,、分别为故障行波到达线路两端的时刻。由公式可知测距算法的精确度受线路实际长度、行波传播速度、波头到达线路两端时刻的影响。电缆线路两点之间的地面水平距离与两点之间的电缆线路实际长度存在一定比例关系,并且导线长度随着温度变化也会发生均匀变化,工程中实际给出的线路长度为线路地面水平距离之和,如果按照给定的线路长度进行测量,会带来误差。

矿用屏蔽电缆基于meemd和Teo的电缆故障测距方法

在变化相同的温度下,电缆的变化是一个定值,因此其比值也是固定的,所以故障点到线路一端的地面水平距离同故障点到该端实际电缆长度的比值近似于给定的线路长度与电缆线路实际长度的比值。行波波速是一个不确定值,按照给定波速计算同样会增大误差,运用不受波速影响的双端测距算法能够进一步减小测距误差。本文针对传统Hilbert-Huang变换在电力电缆测距中存在的模态混叠问题,提出一种基于MEEMD和TEO的电力电缆测距方法,该方法消除了EMD模态混叠现象,基于电力电缆线路的实际情况,推导出不受波速影响的双端测距算法计算故障距离。
  6、不受故障距离和过渡电阻的影响
  以不同故障距离、不同过渡电阻进行仿真,结果表明,该方法相对传统Hilbert-Huang变换,测量精度高、耗时短且不受故障距离和过渡电阻影响,测距误差能达到工程实际要求。
  如果您对“矿用屏蔽电缆基于meemd和Teo的电缆故障测距方法”感兴趣,欢迎您联系我们
上一篇:没有了
下一篇:矿用屏蔽电缆:高压交联电缆接地系统试验内容和
13831622291
Copyright © 天津市电缆总厂橡塑电缆厂 备案号:浙ICP备16002493号-1
产品服务热线
15373238732
QQ号咨询
331725953(点击咨询)
微信扫一扫
扫一扫